2019年1月2日水曜日

Neural Ordinary Differential Equations

Neural Ordinary Differential Equations

Ricky T. Q. Chen*, Yulia Rubanova*, Jesse Bettencourt*, David Duvenaud University of Toronto, Vector Institute Toronto, Canada {rtqichen, rubanova, jessebett, duvenaud}@cs.toronto.edu 

Abstract 
We introduce a new family of deep neural network models. Instead of specifying a discrete sequence of hidden layers, we parameterize the derivative of the hidden state using a neural network. The output of the network is computed using a blackbox differential equation solver. These continuous-depth models have constant memory cost, adapt their evaluation strategy to each input, and can explicitly trade numerical precision for speed. We demonstrate these properties in continuous-depth residual networks and continuous-time latent variable models. We also construct continuous normalizing flows, a generative model that can train by maximum likelihood, without partitioning or ordering the data dimensions. For training, we show how to scalably backpropagate through any ODE solver, without access to its internal operations. This allows end-to-end training of ODEs within larger models. 

https://arxiv.org/pdf/1806.07366.pdf

0 件のコメント:

コメントを投稿

石田吉貞『隠者の文学』講談社学術文庫

 FIRE系の動画や書籍を読んでいる。また、年齢を上になるにつれ、自分と社会の距離感なども気になる。本書は、以前から読んで気にいったいた中野孝二『清貧の思想』と同様の思想の書籍である。 石田吉貞『隠者の文学』講談社学術文庫 隠者の文学―苦悶する美 (講談社学術文庫) 隠者と隠者...