2019年1月2日水曜日

Neural Ordinary Differential Equations

Neural Ordinary Differential Equations

Ricky T. Q. Chen*, Yulia Rubanova*, Jesse Bettencourt*, David Duvenaud University of Toronto, Vector Institute Toronto, Canada {rtqichen, rubanova, jessebett, duvenaud}@cs.toronto.edu 

Abstract 
We introduce a new family of deep neural network models. Instead of specifying a discrete sequence of hidden layers, we parameterize the derivative of the hidden state using a neural network. The output of the network is computed using a blackbox differential equation solver. These continuous-depth models have constant memory cost, adapt their evaluation strategy to each input, and can explicitly trade numerical precision for speed. We demonstrate these properties in continuous-depth residual networks and continuous-time latent variable models. We also construct continuous normalizing flows, a generative model that can train by maximum likelihood, without partitioning or ordering the data dimensions. For training, we show how to scalably backpropagate through any ODE solver, without access to its internal operations. This allows end-to-end training of ODEs within larger models. 

https://arxiv.org/pdf/1806.07366.pdf

0 件のコメント:

コメントを投稿

バージニア・ウルフ

 バージニア・ウルフ(Virginia Woolf, 1882年1月25日 - 1941年3月28日)は、イギリスの小説家、随筆家、批評家であり、20世紀モダニズム文学の重要な作家の一人です。彼女は意識の流れの技法や詩的な散文を駆使し、文学に革新をもたらしました。また、フェミニズ...